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INTRODUCTION 

A recent article' points out that at  least some 
fifty papers have been published on the subject 
of the dynamic properties of high polymers. These 
papers are usually written with the objective of 
assessing the quality of materials used in tires, 
vibration mountings, shock absorber stops, rubber 
stops, etc. Throughout these papers, it turns out 
that damping is expressed in a t  least 14 different 
units.2 Our view is that a large part of the con- 
fusion arises from the attempt to analyze rubber- 
like behavior in terms of the second order system: 

mx + c2 + kx,= Po sin wt  (1) 

where x is a measure of the strain and 2 and x are 
its derivatives, 1 is time, PO is the amplitude of the 
applied force, and w is the radian frequency of 
force application. 

If c and k were constant over the range of x and 
w ,  there would be little difficulty. However, such 
is not the case. Figures 1 and 2 show the variation 
of the spring rate k and damping coefficient c with 
frequency for the case of compression forcing in 
rubber. These data are those of Cooper2 of Dunlop. 
The attempt to apply a simple model such as that 
expressed by eq. (1) to a system as complex as that 
characterized by Figures 1 and 2 is bound to lead 
to confusion. In addition, even if the current 
analysis could be made by means of correct sin- 
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Fig. 1. Spring rate against frequency. 

usoidal analysis, how could one predict the re- 
sponse of the elastomer to the specific forcing to 
which the rubber article would be subjected in the 
tire or shock mounting? These forcing functions 
are quite complex and contain a large number of 
frequency components. For example, remember- 
ing Figure 1, how can one specify the damping 
characteristics of a rubber article when it is acted 
upon by a forcing function containing a wide 
variety of frequency components? 

The method described in this paper, we feel, 
represents a different approach to this problem. 
In its most sophisticated form, no assumptions are 
made concerning models and the response of the 
rubber to almost any forcing function can be cal- 
culated. 

ANALYSIS 

Before going into the experimental details of 
the technique, I would like to review briefly some 
of the mathematical justification for this method. 

A widely used theorem in the field of electrical 
analysis is given by 

f 3 W  = d/dt [So"fl(t - X>fi(~>dN (2) 

where X is an integration variable, fi(t) is the re- 
sponse of a system to a unit step function and f3(t) 
is the response of the system to the forcing function 
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Fig. 2. Damping against frequency. 
269 



270 M. BERGER 

f2(t). Another way of stating eq. (2) is that if we 
know the response of a system to a step function 
then we can predict its response to any other func- 
tion. The application of this theorem to  the study 
of elastomers is quite easy to see. If we rewrite 
eq. (2) in the usual nomenclature of elastomeric 
systems and simplify, we get 

e( t )  = fdt)s(O) + J" f& - A) [ d S ( ~ ) / d t I d ~  (3) 

where now fi(t) is the strain obtained under a step 
force and e ( t )  is the strain response under a force 
X ( t ) .  In other words, if we know the deformation 
of a sample of rubber to a step force, then we can 
predict its deformation to any force. 

Mathematically, there is a limitation to this 
technique, and that is that the dynamic system 
describing the elastomeric material be linear. 
(We will see later how this assumption can be re- 
moved.) However, we need not make any other 
assumption about the system. All we need to know 
is the response of the elastomer to a step force and 
then we can predict its response to any force. 

EXPERIMENTAL 

As the analysis above points out, in order to make 
practical use of the theory, we must be able to 
apply a step force experimentally to the rubber. 
Of course, it is impossible to apply a true mathe- 
matical step, for this would mean applying a force 
in no time a t  all. However, we must apply a force 
in a time which must be faster than the response 
of the rubber and much faster than the highest 
frequency component we wish to study. That is 
to say, on the time scale we wish to analyze the 
forcing function must look like a step. The ex- 
perimental setup we finally arrived at is shown in 
Figures 3 and 4. The wire cutter cuts the wire. 
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Fig. 4. Strain gauge and sweep circuit for step function 
machine. 

This action releases the weight and the spring 
transfers the load to the rubber sample. Thus, 
the rubber sample receives a step force in compres- 
sion. Strain gages on the sample measure the 
deformation of the rubber. Hence, we have the 
response of the rubber to a step force. With this 
information we are prepared to apply the analysis 
of the previous section. Before doing this, how- 
ever, I would like to discuss some of the experimen- 
tal details. In order for the spring to exert most 
of the load on the rubber sample, the spring must 
be much softer than the rubber. If it is not, the 
deflection of the rubber will relieve the load ex- 
erted on it by the spring. The bonded strain 
gages on the rubber which detect the rubber re- 
sponse must be calibrated in the step machine. 
This is done by applying various loads to the rubber, 
measuring the deflection of the rubber by means 
of a dial gage, and noting the output of the strain 
gages. A typical calibration is shown in Figure 
5. As shown in the diagram, an accelerometer 
triggers the sweep of the scope so that the response 
signal can be seen. Figure 6 shows how successful we 
were in applying a true step. (The time between 
arrows represents 50 psec.) This signal was ob- 
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Fig. 3. Schematic of the mechanical components of the step 
function machine. 
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Fig. 5. Calibration of rubberatrain gauge bond. 
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Fig. 6. Step force of 50 lb. 

tained from the accelerometer on the platform 
supporting the sample. For most of the results 
shown here, the signal was triggered by other means. 
Unfortunately, this triggering was not quick 
enough to catch the response curve at  about zero 
time. However, the accelerometer technique de- 
scribed above does so adequately. One further 
point should be made concerning the experimental 
setup. At rates such as those we are using here 
with a mechanical setup, it is virtually impossible 
to eliminate inertial effects. Our best calculation 
is that we have about 150 g. of mass involved in the 
dynamic system. This is not as serious a limita- 
tion as it seems at  first glance. What this means 
is that rather than the response of the elastomer 
alone, we obtain the response of the elastomer- 
mass system. However, since the mass is con- 
stant for all time, the inertial effect is not a very 
serious detriment in evaluating polymers. As will 
be shown later, it is possible to eliminate inertial 
effects by special techniques. 

DISCUSSION 

Figure 7 shows a typical response of an elastomer 
to the step function as obtained by our machine. 
The time interval indicated by one division is 
approximately 2 msec. The inertia effect is clearly 
seen by the undulations at  the top of the curve. 
Xotice also that in these photographs we have not 
caught the initial rise time of the response curves. 
This is an important portion of the curve, since 
it corresponds to high frequency behavior. As 
mentioned earlier, we have improved our “trigger- 
ing” technique and are now in a position to study 
the complete response curve. Once these curves 
are obtained, they must be inserted into the integral 
eq. (3) together with the forcing function one is 

Fig. 7. Typical response to a step force. 
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Fig. 8. Frequency response of butyl and SBR vulcanizates 
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Fig. 9. Transmissibility of butyl and SBR as a function of 
frequency. 

interested in. To check out the method, we first 
studied sinusoidal forcing. The method of integrat- 
ing the equation is primarily that used by Schechter 
et aL3 We feel we have improved on this technique, 
and it is discussed in detail in Appendix I. Figbe 
8 shows the calculated response of unfilled butyl 
and SBR rubbers over a wide frequency range. 
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Fig. 10. Response of butyl and SBR to a pulse force. 

These data agree very well with conventional 
vibration testing data. In addition, we have com- 
puted the transmissability of the polymers over 
this frequency range. Finally, we have been able 
to calculate how these polymers would respond 

to a pulselike blow as would occur in shock loading. 
This is shown in Figures 9 and 10. A technique for 
evaluating the integral for nonsinusoidal functions 
is shown in Appendix 11. The immediate value 
obtained by such data is in classifying polymers 
for application purposes. If one knows the type 
of forcing imposed on a polymer in a particular 
application, the response of various compounds 
under identical forcing conditions can be calculated 
by this technique. Another advantage inherent 
in this technique is that the test is so fast that there 
is no temperature rise in the sample. In high 
hysteresis stocks, particularly, temperature rise 
during dynamic testing is very difficult to control. 

USE OF ANALOGS 

Recently, we have been using an analog com- 
puter in conjunction with the step function work. 
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Fig. 12. Comparison of step function data with analog re- 
sponse for SBR: (- -) analog; (-) data. 
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Fig. 13. Comparison of step function data with analog re- 
sponse for butyl: (- -) analog; (-) data). 
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Fig. 14. 

NATURAL RUBBER 

0 4 8 12 16 20 24 28 
MILLISECONDS 

Comparison of step function data with analog r e  
sponse for natural rubber: (- -) analog; (-) data. 
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Fig. 15. ElTective modulus (the ratio of maximum force to 
maximum displacement) for butyl, SBR, and natural rubber. 
These testa were run over a frequency range of lo(t10,OOo 
radians/sec. 
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Fig. 16. Response of butyl, SBR, and natural rubber to 
random force. The frequency content of the random force 
is 0-2000 cycles/sec. The steadier the response, the less rub- 
berlike the behavior. 

This increases the power of the technique. To a 
large extent, the linearity restriction is removed. 
The procedure is simply to set up a mechanical- 
electrical analog of the rubber such that the re- 
sponse of the analog to a step function is the same 
as that of the rubber. The components of the 
analog should then bear a direct relationship with 
the dynamic variables of the elastomers. In addi- 
tion, the inertial terms can be eliminated so that 
the rubber can be studied per se. Figure 11 shows 
the analog circuit. Figures 12, 13, and 14 show 
the reponse of SBR, butyl, and natural rubber and 
the respective responses of their analogs. It can 
be seen that the analogs are faithful reproductions 
of the elastomers except at  the initial portion of 
the response. The implication of this will be 
discussed later. Based on these analogs, the 
moduli of the three rubbers were measured and are 
shown in Figure 15. In addition, the response of 
the elastomers to random forces (frequency range 
0-6000 cyclos) is calculated and shown in Figure 
16. This type of information is very useful from 
an application point of view. Random forces 
such as shown in Figure 16 probably occur in a 
tire tread going over a rough road or a vibration iso- 
later under a piece of factory equipment. 

A study of the analogs themselves indicates that 
the following dynamic equations govern the be- 
havior of the elastomers: 

SBR rubber: 

m(d2x/dt2) + [2/(dx/dt)](dx/dt) + 0.35(dx/dt) 
+ 2590X = 0 

Butyl rubber: 
m(d2x/dt2) + 1.4(dx/dt) + 19OOX = 0 

Natural rubber: 
m(d2x/dt2) + 0.25(d~/dt) + [I  - O.O021(d~/dt)] 

1950X = 0 
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All the polymers appear to be represented gen- 
erally as a simple springdashpot system. How- 
ever, there are some deviations in both SBR and 
natural rubber. In SBR, the energy loss seems to 
be of two types. One is the usually rate-dependent 
viscosity loss, and the other the so-called coulomb 
loss. This is akin to dry friction, where the energy 
loss depends onIy on the amplitude, not on the rate. 
A phenomenon such as this might be due to chain 
breakage or some similar mechanism. The natural 
rubber system appears quite complex. The elastic 
constant decreases with increasing frequency. 

The work on attempting to analyze the actual 
equations of the analog is still in the early stages. 
The above conclusions concerning the nature of 
the rubber dynamic system is at best tentative and 
certainly subject to change. In our future work, 
we hope to explore this point more thoroughly. 

APPENDIX I 

The following analysis is in part that of Schechter 
et aL3 We can rewrite eq. (3) in the form: 

e(t)  = fdO>S(t) + sot [ d f i ( ~ ) / d ~ ] S ( t  - X ) ~ X  (4) 

where the nomenclature is the same as that of 
eq. (3) of the text. For sine wave forcing eq. 
(4) becomes 

e( t )  = Ji [ d f i ( ~ ) / d h ]  sin w(t  - X)~X (5) 

sincefi(0) = 0. 

e(t)  = J;[dfi (x)/~x] (sin wt cos COX - cos ot sin OX)& 
(6) 

On integration of eq. (6) by parts we get 

e( t )  = wsin wt  Jt f 1 ( ~ )  sin w ~ d ~  

Then eq. (5)  can be rewritten 

+ wcos wt ht f l (X)  cos w x d x  (7) 

Now if we wait long enough so that we can reach 
a time t’ such that a t  t‘ the response to the step 
has settled down to very close to its equilibrium 
value, eq. (7) can be written: 

e( t )  G w sin wt [so’ f i (X>  sin wXdh + C x! sin wXdX] 

+ w cos wt [&~’fl(X) cos wXdX + CS,fcos oXdX] 

(8) 

Integrating and simplifying eq. (8) we obtain: 

e( t )  E [w J,,’fi(~) sin w ~ d ~  + C cos ot’] sin wt 

+ [w fl’fi(~> cos U X ~ X  - c sin wt’lcos wt (9) 

However, we know that the response of the system 
after all transients have died down is of the form 

e( t )  = X sin (wt - ‘P) 

X = (A2  + B2)”’ 

(10) 

(11) 

Comparing eqs. (9) and (10) we see that 

and 

@ = tan-l(B/A) 

where 

A = w .f”’fi(X) sin wXdX 4- C cos wt’ 

B = w Ji‘fi(X) cos oXdX - C sin at’ (12) 

Hence, if we can evaluate the expressions in eq. 
(12) for various frequencies, we will be in a position 
to calculate the response of the frequency range. 

Schechter evaluates the integrals by various ap- 
proximation formulae which must be computed 
on a digital computer. However, by use of a 
relatively small, tabletop analog computer, it is 
possible to get A and B in a very direct fashion. 

The following example illustrates the method 
quite directly. Figure 17 shows the response of a 
butyl sample as obtained from the step function 
machine. By means of the arbitrary function 
generator of the analog, this response was dup- 
licated and is shown in Figure 18. Sine and 
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Fig. 17. Measured response to “step” of butyl. 
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Fig. 18. Response as generated on function generator. 
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19. Analog diagram for obtaining frequency response from etep data. 

cosine waves are generated on the analog and 
combined with the output of the function generator 
to form the expressions in eq. (12). These ex- 
pressions are fed to an x-y recorder, where the 
second axis is driven by a time generator. The 
values of A and B are read a t  “real” time t’ (in 
this case sec.), and thus X and 9 can be cal- 
culated. The analog drawing is shown in Figure 
19 and the result of the computation in Figure 
20. 

I 8 L I 
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Fig. 20. Frequency response of butyl (calculated via tech- 
nique of Appendix I). 

APPENDIX II 

In order to evaluate eq. (3) for nonsinusoidal 
driving forces, we have found it necessary to 
employ graphical integration. The following ex- 
ample illustrates the technique. Suppose we wish 
to find the response of the butyl discussed in Ap- 
pendix I to a force described by Figure 21, i.e., a 
parabolic force. The equation describing this 
force is 

s = (0.02t - t 2 )  x 104 (13) 

T I H E  I N  SECONDS 

Fig. 21. Parabolic force. 
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T I W E  x 103 I N  SECONDS 

Fig. 22. Response for parabolic forcing. 
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Fig. 23. Hysteresis loop for parabolic forcing. 

(Actually this expression should be multiplied by a 
factor of 50. However, since the response to a 
“unit” is really the response to a step of 50 lb., 
unity in this case is equivalent to 50.) Inserting 
eq. (13) in eq. (3) of the text we have 

e ( t )  = lO4.f;f1(t - X) (0.02 - 2X)dX (14) 

where jl(1) is, of course, described by Figure 17. 
If we plot the product, fl(tl - X) (0.02 - 2X), 
against X and then find the area under the curve, 
we have e ( t l ) .  Doing this for a large number of 
tl yields the response e ( t ) .  This is shown in Figure 
22. From Figures 21 and 22 it is possible to con- 
struct the stress-strain curve of the rubber under 
this type of forcing. This is shown iQ Figure 23. 
The area within the loop, of course, is the energy 
lost during deformation. 
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Synopsis 
The dynamic behavior of elastomers is usually studied in 

terms of a sinusoidal system. The theoretical and practical 
limitations of such analysis are discussed. A method which 
permits calculation of dynamic properties over a wide range 
of frequencies and forcing functions is described. The 
theoretical justification and limitations as well as the ex- 
perimental setup are presented. Using SBR, natural rubber, 
and butyl, examples of the dynamic responses for various 
forcing functions are shown. The analogue computer is 
used to show properties of the above described rubbers 
which are useful from both the theoretical and application- 
oriented viewpoints. 

Rbum6 
Le comportement au point de vue dynamique des Blasto- 

meres a 6t6 6tudi6 d’habitude suivant un systkme sinusoidal. 
Les limitations theoriques et pratiques d’une telle analyse 
sont discutbs. Une methode, qui permet le calcul des 
propri6tAs dynamiques dans un vaste domaine de fr6quences 
et de fonctions forc6es, est d6crite. La justification et les 
limitations thkoriques de m&me que le monde operatoire 
exp&imental, sont prksenthes. En employant du caout- 
chouc SBR, du caoutchouc nature1 et de butyle, des ex- 
emples de rbponses dynamiques pour des fonctions forcees 
varibes, sont donnb. Un calcul analogue est employ6 pour 
montrer les propri6t6s des caoutchoucs, d6crits ci-dessus; 
ceci est interessant pour l’usage tant du point de vue 
theorique que du point de vue des applications. 

Zusammenfassung 

Das dynamische Verhalten von Elastomeren wird gewohn- 
lich als das eines durch eine Siusfunktion darstellbaren 
Systems untersucht. Die theoretischen und praktischen 
Beschrankungen einer solchen Analyse werden diskutiert. 
Eine Methode wird beschrieben, welche die Berechnung 
dynamischer Eigenschaften uber einen weiten Bereich von 
Frequenzen und Beanspruchungsfunktionen gestattet. Die 
theoretische Begundung und die Begrenzungen der 
Methode, sowie die experimentelle Anordnung werden ange- 
geben. Fur SBR, Naturkautschuk, und Butyl werden 
Beispiele fur das dynamische Verhalten bei verschiedenen 
Beanspruchungsfunktionen gegeben. Ein Analogcomputer 
wird zur Aufreigung von Eigenschaften der oben beschriebe- 
nen Kautschuke verwendet, welche sowohl von einem 
theoretischen als auch anwendungstechnischen Gesichb 
spunkt aus interessant erscheinen. 
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